【亡羊补牢】挑战数据结构与算法 第40期 LeetCode 437. 路径总和 III(二叉树)

仰望星空的人,不应该被嘲笑

题目描述

给定一个二叉树,它的每个结点都存放着一个整数值。

找出路径和等于给定数值的路径总数。

路径不需要从根节点开始,也不需要在叶子节点结束,但是路径方向必须是向下的(只能从父节点到子节点)。

二叉树不超过1000个节点,且节点数值范围是 [-1000000,1000000] 的整数。

示例:

root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8

      10
     /  \
    5   -3
   / \    \
  3   2   11
 / \   \
3  -2   1

返回 3。和等于 8 的路径有:

1.  5 -> 3
2.  5 -> 2 -> 1
3.  -3 -> 11

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/path-sum-iii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解题思路

本题采用方式就是先序遍历,对于遍历到的每个节点,我们都进行一次 dfs,但是考虑本题的数字范围为负数,对于当前一条路我们得到了一条路径后,假如后面还有路可以走,那么我们还是继续走,因为后面可能出现正负抵消的情况。

面试中如果遇到题例没有明确说明数字范围,建议和面试官沟通。

/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @param {number} sum
 * @return {number}
 */
var pathSum = function (root, sum) {
    // 定义一个计时器
    let cnt = 0;
    // 先序遍历所有根节点
    let preOrder = (root, sum) => {
        if (root == null) return;
        dfs(root, sum);
        preOrder(root.left, sum);
        preOrder(root.right, sum);
    }
    let dfs = (root, sum) => {
        if (root == null) return;
        sum -= root.val;
        // 求和满足,累加
        if (sum === 0) cnt++;
        // 递归左右子树,如果当前和为0了,但是下面还是有路,还是继续走下去
        // 因为本题数值范围存在负数,可能继续走下去还存在满足条件的路径
        dfs(root.left, sum);
        dfs(root.right, sum);
    }
    preOrder(root, sum);
    return cnt;
};

最后

文章产出不易,还望各位小伙伴们支持一波!

往期精选:

小狮子前端の笔记仓库

leetcode-javascript:LeetCode 力扣的 JavaScript 解题仓库,前端刷题路线(思维导图)

小伙伴们可以在Issues中提交自己的解题代码,🤝 欢迎Contributing,可打卡刷题,Give a ⭐️ if this project helped you!

访问超逸の博客,方便小伙伴阅读玩耍~

学如逆水行舟,不进则退
一百个Chocolate CSDN认证博客专家 CSDN博客专家 博客之星 前端开发攻城狮
JS,TS,LeetCode,Vue,React,算法爱好者。
主要分享前端知识,立志成为优秀前端博主。
座右铭:学如逆水行舟,不进则退!
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值